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ABSTRACT

Forecast characteristics of Northern Hemisphere atmospheric blocking and
the MJO were diagnosed using an extensive time series (Dec-Jan-Feb 1985-2012) of
daily medium-range ensemble reforecasts based on an approximately stable version
of the NCEP Global Ensemble Forecast System (GEFS).

For blocking : (a) the GEFS slightly under-forecasted blocking frequency at
longer leads in the Euro-Atlantic sector, and inter-annual variability of blocking
frequency was quite large; (b) predictive skill of actual blocking was substantially
smaller than its perfect-model skill; (c) block onset and cessation were forecast less
well than overall blocking; (d) there was substantial variability of blocking skill
between half-decadal periods; and (e) the reliability of probabilistic blocking
forecasts degraded with increasing lead time.

For the M]O: (a) forecasts of strong M]Os propagated too slowly, especially
the component associated with outgoing longwave radiation (OLR), i.e., convection;
(b) tropical precipitation was greatly over-forecast at early lead times; (c) the
ensemble predictions were biased and/or under-dispersive, manifested in U-shaped
rank histograms of MJO indices. Magnitude forecasts were especially U-shaped. (d)
bi-variate MJ]O correlation skill was larger for its wind than for its OLR component,
and was larger for the higher-amplitude MJO events; (e) there was some half-
decadal variability in skill; (f) probabilistic skill of the MJO forecast was modest, and
skill was larger when measured relative to climatology than when measured

relative to a lagged persistence forecast.



63 For longer-lead forecasts, the GEFS demonstrated little ability to replicate the
64 changes in blocking frequency due to a strong MJO that were noted in analyzed data.
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1. Introduction.

Medium-range predictability and forecastability! of low-frequency modes of
atmospheric variability can be evaluated more readily with a long time series of
forecasts. In this manuscript we evaluate two such modes of variability, Northern
Hemispheric atmospheric blocking and the Madden-]Julian Oscillation (M]O; Madden
and Julian 1971) and their interactions using an extensive set of global medium-
range ensemble reforecasts.

Both the MJO and blocking occur somewhat infrequently at a particular
location. Using the blocking definition of Tibaldi and Molteni (1990), Northern
Hemisphere wintertime blocking occurs approximately 2% to 22% of the time,
averaged over several decades. Blocks are most common over the eastern Atlantic
Ocean and western Europe, with a secondary frequency maximum in the central
Pacific Ocean. Blocks can be persistent, leading to both long periods of rather
similar, and often high-impact weather. For the slowly moving, large-scale,
equatorially trapped tropical convective clusters and associated wind perturbations
known as the MJO, a given year may produce only a couple coherent, high-amplitude
MJO events, although this number will vary depending on the definition of the MJO

(Straub 2013).

1 Predictability here refers to an intrinsic property of the atmospheric process and
measures the time scale at which two initially similar but not identical perturbed
initial conditions will become as different as random draws of atmospheric states.
While numerical models are often used to estimate the (unknown) predictability,
the predictability is not a forecast property. Forecastability, in contrast, indicates
the ability of the forecast model to provide guidance that the user will judge to have
some value. Forecastability may be evaluated with many different metrics.
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Evaluating the predictability and forecastability of blocking and the MJO are
challenging given the infrequency and the temporal continuity of these events, the
latter of which reduces the effective sample size (Wilks 2006, eq. 5.12). If one is
interested, for example, in the ability of the model to forecast block onset for a
particular longitude band, a three-month period may have, say, 15 days with
blocked conditions, but most likely those 15 days occurred in 1-3 persistent
blocking events. Similar issues occur with the MJO. The interaction of two such
events is even more difficult to evaluate with limited samples, e.g., evaluating the
change in blocking frequency related to a large forecast MJO event in the Indian
Ocean. A large sample size could be provided from a reforecast, i.e., a multi-year or
preferably a multi-decadal sample of forecasts from a fixed forecast model and
assimilation system.

Extensive reforecasts (hindcasts) often haven’t been available to facilitate
such studies. For blocking, the most comprehensive recent study was by Jung et al.
(2012), which used hindcasts to document blocking frequency in extended-range
simulations from the European Centre for Medium-Range Weather Forecasts
(ECMWF) model at various resolutions. The authors found that Euro-Atlantic
sector blocking frequency was generally more under-forecast with lower-resolution
models. Older studies included the Watson and Colucci (2002) study of Northern
Hemispheric wintertime blocking using data from the operational NCEP global
spectral model from 1995-1998, and Mauritsen and Kallén (2004), who studied
blocking in the ECMWEF system during the Northern Hemispheric 2000-2001 winter.

Both studies found too few blocks in the forecast. Pelly and Hoskins (2003a), using
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a potential vorticity-based method of defining blocks, evaluated the ECMWF output
for a year of data beginning on 1 August 2001, a period spanning several model
changes. Though they also found blocking frequency was under-forecast, there was
positive skill in the probabilistic forecasts of blocks out to 10 days, and they found
block onset was better forecast than block cessation.

There have been more recent studies of the MJO than for blocking, for
seasonal simulations at least. The MJO is being actively studied in part because it
affects monsoon (Yasunari 1979) and tropical cyclone variability (Maloney and
Hartmann 2000ab). The MJO also can excite extra-tropical Rossby wave trains
(Knutson and Weickmann 1987, Jones et al. 2004, Weickmann and Berry 2009) and
can interact with mid-latitude, low-frequency modes of variability such as the North
Atlantic Oscillation (Lin et al. 2009). The MJO is often poorly forecast, and there is
some evidence that an improved MJ]O forecast may result in improved mid-latitude
forecasts (Ferranti et al. 1990, Vitart and Molteni 2010).

The interaction of the MJO with the mid-latitude flow and its forecastability
has been an active area of investigation (Leibmann and Hartmann 1984, Kiladis and
Weickmann 1992, Hendon et al. 2000; Riddle et al. 2012). Since the MJO represents
the variability at time scales of 30-70 d-1, (e.g., Waliser et al. 2009), it has been
common to examine numerical simulations to lead times of several months and to
leverage hindcasts to provide large-enough samples. Examples of studies with
seasonal forecast models and hindcasts include Hendon et al. (2000), Lin et al.
(2008), Seo et al. (2009), Kim et al. (2009), Vitart and Molteni (2010), Gottschalck et

al. (2010), Kang and Kim (2010), Jia et al. (2010), and Crueger et al. (2013). For the
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medium range (here, roughly +3 to +16 days lead time), the literature on MJO
forecast evaluation is sparser. Some verification statistics were calculated for
THORPEX Interactive Grand Global Ensemble (TIGGE; Bougeault et al. 2010) data by
Matsueda and Endo (2011).

Recently, NOAA scientists created an extensive global ensemble reforecast
data set (Hamill et al. 2013) using the version of the NCEP Global Ensemble Forecast
System (GEFS) that was operational in 2012-2013. This data set was created to
facilitate the diagnosis and statistical correction of systematic forecast errors in
medium-range ensemble forecasts, thereby improving GEFS guidance. In this article,
we demonstrate an ancillary purpose, showing how the extensive reforecasts
facilitate the diagnosis of errors in low-frequency modes of variability. Specifically,
we will examine the usefulness of the reforecasts for examining the predictability
and forecastability of blocking and the MJ]O as well as their inter-relationships. The
operating hypothesis, which as we will show is easily disproved, is that the
ensemble prediction system well represents the evolution of forecast uncertainty of
these phenomena.

Below, section 2 briefly describes the data set and the methods for forecast
evaluation. Section 3 provides results, while section 4 provides a discussion and

conclusions.

2. Data and Methods

a. Description of the data sets.
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Unless noted otherwise, reforecast data for Dec-Jan-Feb 1985-2012 period
was used in this study. The global ensemble reforecast data was more completely
described in Hamill et al. (2013). Briefly, this reforecast data set is based on the
2012 version of the NCEP Global Ensemble Forecast System (GEFS). An 11-member
retrospective ensemble forecast was generated to +16 days lead for every day at 00
UTC from 1 December 1984 to the current date. Consistent with the operational
GEFS, the model resolution was T254L42 to day +8 (~40-km grid spacing at 40°
latitude and 42 levels). Starting at day +7.5 and extending to day +16, the
reforecasts were conducted at the reduced resolution of T190L42 (~54-km grid
spacing). Through 20 February 2011, the Climate Forecast System Reanalysis
(CFSR; Saha et al. 2010) provided the control initialization and verification.
Thereafter, the operational grid-point statistical interpolation (GSI; Kleist et al.
2009) procedure was used, which was updated to a hybrid variational-ensemble
data assimilation approach (Hamill et al. 2011) on 22 May 2012. Additional
ensemble member perturbed initial conditions were generated using the ensemble
transform with rescaling approach of Wei et al. (2008). See Hamill et al. (2013) for
more details on the data set, including a description of the extensive amount of data
that is available for fast-access download. In this study, data interpolated to a 1-
degree grid was used.

For examination of associated tropical precipitation forecasts, 1-degree
Global Precipitation Climatology Project (GPCP, Huffman et al. 2001) data was used.

This GPCP data was available only from 1997 - current.



175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

b. Blocking and M]O definitions.

For blocking, though there have been some modern alternatives (e.g., Pelly
and Hoskins 2003b, Barnes et al. 2012), here blocking was defined directly
following the simple method of Tibaldi and Molteni (1990) based on 500 hPa
geopotential heights. Conditional climatologies of blocked and unblocked 500 hPa
height patterns at the international dateline are shown in Fig. 2. Given the
increased frequency of blocking in the Euro-Atlantic and Pacific regions (Fig. 2a),
our analysis of blocking forecastability and predictability was limited to two sectors,
the “Euro-Atlantic” sector, from 45° W longitude to 45° E longitude, and the “Pacific”
sector, from 140° E longitude to 130° W longitude.

For MJO analysis, a now-standard method was used to compute the
projections onto the two leading empirical orthogonal functions (EOFs) of MJO
variability (Wheeler and Hendon 2004; hereafter WH04). The respective EOFs are
commonly known as “RMM1” and “RMM2.” The EOF structures associated with
RMM1 and RMM2 were taken directly from the real-time MJO web site,

http://cawcr.gov.au/staff/mwheeler/maproom/RMM/. The EOFs were computed

from a time series of longitudinal arrays of filtered anomalies in the 200 and 850
hPa zonal winds and outgoing longwave radiation (OLR), which were averaged in
the band from 15° S to 15° N latitude and normalized by their variances over this
latitude band and all longitudes. This filtering also removed inter-annual variability
and the projection onto the El Nifio/Southern Oscillation (ENSO). The processing of
the reforecast data to calculate the projections of forecast data onto RMM1 and

RMM2 generally followed the procedure outlined by WHO04, with the following
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exception. To remove the effects of ENSO, the projection of the filtered data onto the
Nifio 3.4 index anomalies was removed (Trenberth 1997), as opposed to the “SST1”
index of Drosdowsky and Chambers (2001) cited in WH04. The filtering did
remove the leading three harmonics of the annual cycle and the mean of the
previous 120 days, as in WH04. Our procedure, when applied to the control initial
condition from the CFSR, produced a time series of projections that was a very close
match to the time series produced by WH04 with NCEP-NCAR reanalyses (Kalnay et

al. 1996) data (not shown).

c. Methods of forecast evaluation.

Many methods were used to evaluate blocking and MJO forecast skill. For
blocking, a Brier Skill Score was used that measured the skill of the ensemble
forecast’s ability to set forecast probability of blocked conditions. The Brier Score of
the forecast and climatology were computed separately for each longitude in the
standard manner (Wilks 2006, eq. 7.34). The Brier Skill Score (BSS; ibid, eq. 7.35)
was computed from the sums of Brier Scores of the forecast and climatology over
each longitude within a sector. Forecast probabilities of blocking were set directly
by ensemble relative frequency. For example, if 3 of the 11 members were
diagnosed as having blocked conditions at a particular longitude, the forecast
probability was set to 3/11. Since climatological blocking frequency did not vary
radically within each sector (see Fig. 2 below), there was little reason to apply more
complex procedures (e.g., Hamill and Juras 2006) to account for variations in

climatological event frequency for each sector when calculating the BSS. Skill will
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also be evaluated for block onset and cessation for long-lived blocks. The subset of
dates classified as “block onset” for long-lived blocks were those dates where,

within a given sector, there were < 20 degrees of longitude that were blocked the

day before but = 20 degrees blocked on that day, and where = 20 degrees continued
to be blocked for at least the subsequent 9 days. Dates classified as “block cessation”
were those dates where, for the first date after a defined block onset, <20 degrees

of longitude were blocked. Finally, we will also evaluate the BSS of a “perfect-model”
forecast (Buizza 1997). One of the 11 forecast members replaced the analyzed state,
and then the existence / non-existence of a block was computed from this
replacement data. Probabilities were estimated from the diagnoses of blocking

from the remaining 10 forecast members.

Reliability diagrams (Wilks 2006, p. 287) for blocking probabilities were also
calculated in the standard manner.

The MJO was also evaluated with a variety of metrics. Following now
standard metrics defined by Lin et al. (2008), the correlation skill (COR) and root-
mean-square error (RMSE) of the RMMs were calculated over all ensemble
members as:

11 N a f a f
i1 Zizl[RMMli RMM1;;+RMM2{RMM2;;

COR(7) =

(1)

2 2
2 2
JZ};lzi‘Ll[RMMfil +RMM2¢ ]\/2};1211-":1[RMM1{}. +RMM2{].

and

RMSE(1)= ﬁ ;;12{“=1{[RMM1?-RMM15]2+[RMMZ?-RMszj]Z} (2)

11
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where 7 is the lead time in days, RMM 1] and RMM2{ are the analyzed RMM1 and

RMM2 projections for the ith of N sample days. RMMl{cj and RMMZZ. are their

respective, time-concurrent forecast projections for each of the jth of 11 members.
The COR and RMSE will also be calculated for “high-amplitude” and “low-amplitude”
events. The ith forecast sample is evaluated as high amplitude or low amplitude

depending on the magnitude of the associated analysis. The sample is high

amplitude if \/[RMM1¢ + RMM2¢]? > 1.0 and low amplitude if < 1.0.

We were also interested in the ability of the ensemble to provide high-quality,
reliable probabilistic guidance. For the MJ]O, reliability (or more accurately,
“consistency”) was evaluated with rank histograms (Hamill 2001). Rank histograms
were calculated separately for RMM1 and RMM2, but the average of the two is
reported. Rank histograms were also generated for MJO phase and amplitude. In
generating the rank histograms, the observed value of RMM1 and RMM2 were
assumed to be perfect, so no noise was introduced to ensemble members to
potentially account for inaccuracies in the analyses of RMMs (ibid, Fig. 6 therein).
The phase and amplitude propagation characteristics of the reforecasts will also be
examined; the specific methodology for these will be discussed at the relevant point
in the results section.

A continuous ranked probability skill score (CRPSS; Wilks 2006, p. 302) was
also calculated for M]O forecasts against two reference forecasts, climatology and
lagged persistence. As with rank histograms, continuous ranked probability score

(CRPS) statistics for the forecast and the reference were calculated separately for

RMM1 and RMM2 and then summed. Let CD{ represent the ensemble forecast

12
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cumulative distribution function (CDF) for RMM1 or RMM2 for the ith of N samples.
Similarly, let ®{ represent the analyzed CDF, which is a step function, 0 below the
RMM value and 1 above. @] is the CDF of the reference forecast, be it the
unconditional climatology for Dec-Jan-Feb or a lagged persistence forecast. Then

the CRPSS was calculated as

f
CRPSS = 1.0 — &5 , (3)
CRPST

where the CRPS fwas the continuous ranked probability score (CRPS) of the forecast

and CRPS " was the CRPS of the reference. CRPSfwas calculated via

CRPSS = %2’?:1 e (@ — c1>§‘)2 dRMM (4)
with the CRPS " calculated similarly. For the climatological reference forecast, a
Gaussian distribution was fitted to the climatology individually for RMM1 and
RMM2, which was then used to generate the CDFs. The lagged persistence was
based directly on the “PCRLAG” approach documented in Seo et al. (2009, their eq.
1). Future RMM values were predicted using a multiple linear regression model
using the current RMM values and their values 5, 10, 15, 20 and 25 days in the past.

Some figures below will include PDFs of the daily change in the angle 6 and
magnitude of RMM in the (RMM1, RMM2) phase space. & measures the rotation
from the positive RMM1 axis, and is defined as

6 = tan"'*(RMM2/RMM1), (5)
which can be defined uniquely in the interval —180° < 6 < 180° with knowledge of

the signs of RMM2 and RMM1. Angles of -180° to -135° correspond to “phase 1” in

the (RMM1, RMM2) phase space (see Wheeler and Hendon 2004, Fig. 7); angles of -

13
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135° to -90° correspond to “phase 2,” and so on. The PDFs of 8and RMM magnitude
were estimated with kernel density estimation using a Cressman-shaped kernel

(Cressman 1959) that tapered to 0.0 at 2° or 0.1 units of RMM magnitude.

3. Results.
a. Blocking forecasts.

Figure 2a shows the blocking frequency in the GEFS reforecasts for selected
forecast lead times. Overall, the GEFS replicated blocking frequency reasonably
accurately, though for lead times of +6 days and beyond it under-forecasted
blocking frequency in the Euro-Atlantic sector by up to 25%. While the blocking
frequency curves are relatively smooth over the multi-decadal period, this disguises
tremendous inter-annual variability. Figure 2b shows the yearly blocking
frequencies, spatially smoothed slightly to aid in interpretability. For a given
longitude, blocking frequencies can vary by an order of magnitude or more from one
year to the next. Figure 3 shows that overall positive blocking forecast skill was
retained through day +13, but this skill was far short of the skill that was possible
under-perfect model assumptions. For example, the perfect-model skill at day +7
was as large as the actual skill at ~ day +3.5. It is somewhat likely that the perfect-
model estimate of forecast skill is somewhat too large, too, due to the tendency for
the ensemble forecasts to cluster together, such that their spread is not statistically
consistent with their ensemble-mean error (e.g., Bougeault et al. 2010, Figs. 2-3).
Figure 3 also shows that blocking onset and cessation were somewhat less well

forecast than the overall forecasts of blocking. The skill curves for onset and

14
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cessation were noisier because of the greatly reduced sample size, even with 28
winter seasons of data. Figure 4 shows that there was a substantial amount of
variability in the skill of blocking when the data was sorted by half-decadal periods,
plus 2010-2012. In the Pacific sector, the blocking skill in the most recent 3 years
was the largest, but the 2005-2009 period was intermediate in skill and actually
comparable to the skill during the 1985-1989 period. However, in the Euro-
Atlantic sector, the skill for the 1985-1989 period was substantially smaller than for
the subsequent half decades. The dashed lines in Fig. 4 provide the half-decadal skill
results under the perfect-model assumption. These show some natural variability in
skill at half-decadal timescales. Note that the 1985-1989 period, for example, had
the lowest perfect-model predictability in the Euro-Atlantic sector, which probably
contributed to its especially low real-model skill, while the 2010-2012 period had
among the highest perfect-model skill in the Pacific, indicating that the actual high
forecast skill for this period was in part natural variability. The perfect-model
results here also suggest that even in the best of circumstances, blocking forecast
skill as defined here is limited to approximately two weeks.

Figure 5 presents reliability diagrams for the blocking forecasts at various
lead times. At the earlier lead times the blocking forecasts are mostly reliable, but
the reliability decreases so that by day +15 the forecasts are rather unreliable. As
expected, blocking forecast sharpness decreases over time, as seen in the usage
frequency histograms. There are probably many reasons for the lack of reliability,
including all the usual suspects with unreliable ensemble forecasts; the moderate

resolution of the forecast model, the deficiencies in parameterizations, including

15
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sometimes inappropriate deterministic formulations (Palmer 2012), the sub-
optimal initialization of both the control and perturbations in the ensemble system,

and, as we shall see below, faulty representations of interactions with the MJO.

b. MJO forecasts.

Figure 6 shows the evolution from both analyzed and deterministic forecasts
where the vector (RMM1, RMM2) of initial conditions was within 0.5 units of (1.5, -
1.5), i.e., within the purple circle on the figure. The samples are all various dates
from Dec-Jan-Feb 1985-2012. It appears that the collection of forecasts propagate
somewhat more regularly than the collection of analyzed states, and perhaps the
forecasts lose some amplitude. Figures 7 and 8 attempt to quantify this, providing a
PDF of the daily change in overall RMM angle and magnitude, respectively, as well as
the change attributable specifically to wind and OLR components of the RMM. The
cases used to populate Figs. 7 and 8 were selected in an attempt to isolate situations
where there was a real M]JO between Africa and the Maritime continent, and where
it had robust associated convection. Consequently, only the Dec-Jan-Feb 1985-2012
cases that were included were those that had an RMM amplitude of greater than 1.0,
an RMM?2 < 0.0, and an OLR contribution to the RMM amplitude of greater than 0.5
were included. Consider the overall phase change in Fig. 7a; after a reasonable
mean phase change the first day, for subsequent leads the mean phase change was
substantially smaller for the forecast than for the analyzed, with a phase change of
5-10° for the analyzed but 3-6° for the forecast. Forecast M]Os propagated too

slowly, on average. The forecast propagation of the OLR component of RMM was
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slower than the wind component, though this was true to a lesser extent with
analyzed data as well. This slower propagation can also be diagnosed, for example,
from the reanalyzed rainfall and wind lag correlations shown in Fig. 3 from Weaver
et al. (2011). By inspection, the distributions of phase changes of the forecast PDFs
were not dramatically narrower than of the analyzed PDFs; the main deficiency was
a biased mean, not a lack of spread. Considering the overall magnitude change in
Fig. 8a, both forecast and analyzed exhibit a similar small decrease in magnitude,
though the PDF for the forecast appears slightly more narrow and peaked than for
the analyzed.

Not only did the forecast MJO precipitation features propagate too slowly,
but also the precipitation forecasts exhibited significant bias (Fig. 9). Precipitation
amounts were dramatically over-forecast at the early forecast leads. The general
pattern of the daily GPCP precipitation amount climatology was reasonably
replicated in day +0 to 1 forecast (Fig. 9b), but the average daily forecast
precipitation amounts was commonly > 50% too large. By the beginning of the
second week of the forecast (Fig. 9c), the over-forecast bias was reduced, but there
was less resemblance with the analyzed precipitation pattern. For example, the
connection of the South Pacific Convergence Zone (SPCZ; Folland et al. 2002) to the
inter-tropical convergence zone was missing, and the forecast SPCZ was unduly
zonally oriented, as it often is in climate simulations (Brown et al. 2011). These
pattern changes were even more evident at the end of week +2 (Fig. 9d).

An additional deficiency of the probabilistic MJO forecasts was their under-

dispersion and/or conditional bias. This can be seen by examining the rank
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histograms from the ensemble predictions of MJO RMMs (Fig. 10). All of the rank
histograms were U-shaped, which was most pronounced for the short-lead RMM
amplitude forecasts. The rank histograms indicate that there was unrealistic
consistency of magnitudes among the forecasts; the ensemble prediction system did
not adequately simulate the forecast processes that contribute to diversity in MJO
magnitudes.

Despite the significant biases, the forecasts still exhibit skill in the first week.
Figure 11 presents the CRPSS of the forecasts measured relative to an unconditional
climatology and relative to the regression-based lagged persistence model. The
lagged persistence model presented a tougher reference standard, so forecasts
exhibited less skill in comparison to this. Skill diminished to near 0 by day +11 with
respect to lagged persistence and by day +14 with respect to climatology. While
lagged persistence represented a tougher reference, we note that the first-
generation Climate Forecast System at NCEP (Wang et al. 2005, Saha et al. 2006)
produced forecasts that had higher errors and less correlation skill than the lagged
persistence at all forecast leads. Thus, the current GEFS provides substantial
improvement in the simulation of the MJO relative to the first-generation CFSR.

Consider now the correlation skill and RMSE of MJO forecasts (Fig. 12).
Overall correlation skill and RMSE were comparable to those from the more
accurate models shown in Matsueda and Endo (2011). There was more correlation
skill in the wind components of the RMM than in the OLR component, as shown in
Fig 12(a). This likely relates to the better ability of models to maintain and evolve

the rotational component of the wind over the area of convection, perhaps due to
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improved initial conditions. The correlation skill was much lower for the first two
half-decadal periods, 1985-1989 and 1990-1994, than for the subsequent periods,
with the exception of 2010-2012, though the RMS error was not larger for the first
decade of the forecast (Figs. 12 (c) and (d)). Figures 12 (e) and (f) show that
forecasts initialized from analyses with high amplitude of RMM exhibited more skill
but also higher RMSE than lower-amplitude forecasts. This was also shown in Lin et

al. (2008, their Fig. 13),

c. Interactions between blocking and the MJO.

Finally, we briefly consider the ability of the forecast model to successfully
replicate the ability to discern changes in blocking frequency for different phases of
strong MJOs. Strong M]Os are defined as the set of dates where the magnitude of
the RMM is in the upper quartile of its distribution, forecast or observed. Figure 13
presents the results. Consider panel (a). Here the change in blocking frequency for
a strong MJO relative to the unconditional blocking frequency is shown as a function
of longitude (abscissa) and of the analyzed phase 6 (ordinate) of the MJO, as defined
in section 2c. To provide an adequate sample size for a given 6, the data plotted for
a given Qactually includes analyzed samples with similarly diagnosed 6, specifically
where -22.5° < 6< 22.5°. Note some interesting characteristics in the analyzed
relationship of blocking frequency changes. As 6 varies between 0° and 120° (i.e,,
the MJO’s center moves from the Maritime continent to western N. America), at 0°
longitude, the blocking frequency changes from a strongly negative anomaly in

blocking frequency to a strongly positive anomaly. Restated, analyzed Euro-Atlantic
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blocking frequency changes from below its long-term average to above average as
the MJO moves east from the Maritime continent. We note that this is consistent
with previous results, such as the 500 hPa anomaly composite for various phases of
the MJO in Lin et al. (2009, Fig. 4). Our figure 13(b)-(d) then show the respective
blocking frequency anomalies when the forecast MJO phase is of the noted angle,
and when the forecast M]JO magnitude is greater than the upper quartile of the
forecast distribution. The day +4 forecast in panel (b) still replicates many of the
essential anomalies of the analyzed, including the shift from a strongly positive
blocking frequency anomaly to a strongly negative anomaly along the Greenwich
meridian as @ varies between 0 and 120 degrees. However, much of the frequency
anomaly detail is lost by day +8, and the day +16 forecasts show no apparent
relation to the analyzed. From this, we can conclude that the internal dynamics of
the GEFS do not represent very well the processes that lead to inter-relationships

between blocking and the MJO.

4. Discussion and conclusions

Some modes of atmospheric variability are uncommon enough and/or
operate on long-enough timescales that a short time series of past forecasts will not
prove sufficient for diagnosing their characteristics. Atmospheric blocking and the
MJO are two such phenomena. In this paper we have shown how a very long time
series of ensemble forecast guidance facilitates a greater understanding of the
forecastability and predictability of these phenomena. In this case, the long time

series was provided by a 28-year data set of reforecasts from the NCEP Global
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Ensemble Forecast System. The paper more specifically explored Northern
Hemispheric blocking, the MJ]O, and their interaction during Dec-Jan-Feb 1985-2012
period.

With regards to blocking, the reforecasts showed that the GEFS slightly
under-forecasted blocking frequency at longer leads in the Euro-Atlantic sector.
Furthermore, the inter-annual variability of blocking frequency was shown to be
quite large, demonstrating how difficult it can be to achieve a representative sample
with only a few years of data. The predictive skill of the probabilistic forecasts of
actual blocking was substantially smaller than its perfect-model skill, whereby a
member of the ensemble was used as a synthetic verification. This indicates that
there is still tremendous potential for improvement in blocking forecasts. However,
it is also likely that the perfect-model results present a somewhat over-optimistic
estimate of the upper range of forecast skill. The GEFS system and most other
ensemble systems are under-dispersive, and as such, the members of the ensemble
unduly resemble each other, inflating the perfect-model skill estimates. It was also
found that block onset and cessation were forecast somewhat less well than block
maintenance, and there was substantial variability of blocking skill between half-
decadal periods. Finally, the reliability of probabilistic blocking forecasts degraded
with increasing lead time, and as expected, blocking forecasts became progressively
less sharp, i.e., forecast probabilities were less often 0.0 and 1.0 and more often
resembled the model climatology.

Forecasts of strong M]JOs propagated too slowly, especially the component

associated with outgoing longwave radiation (OLR), i.e., convection. Deep tropical
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convection appeared to have other systematic biases in the GEFS; in general, there
was too much tropical precipitation forecast in the Indian and Pacific Oceans,
especially for the shorter forecast leads. The ensemble predictions were biased
and/or under-dispersive, manifested in U-shaped rank histograms of M]O indices.
Forecasts of the magnitude of the MJO’s leading EOFs were especially U-shaped. Bi-
variate MJO correlation skill was found to be larger for the wind component than for
OLR component, and skill was larger for the higher-amplitude MJO events. Skill
varied significantly between half-decadal periods, with the period 1985-1994 and
2010-2012 exhibiting lower MJO skill than the 1995-2009 period. Probabilistic
skill of the M]O forecast was modest, and skill was larger when measured relative to
climatology than when measured relative to a lagged persistence forecast. Finally,
for longer-lead forecasts, the GEFS demonstrated little ability to replicate the
changes in blocking frequency due to a strong MJO that were noted in analyzed data.
This paper has discussed forecast skill without providing analysis of the
potential forecast systematic errors that may lead to deficiencies in blocking, the
M]JO, and their inter-relationships. This much more challenging work is left as future
research. We do hope that we have laid out a first step, demonstrating the
predictability and forecastability of these phenomena using the newly created GEFS

reforecast data set.
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FIGURE CAPTIONS

Figure 1: Composite of Northern Hemisphere 500 hPa geopotential height patterns
under (a) blocked flow at 180° E longitude, and (b) unblocked flow at 180° E
longitude.

Figure 2: (a) Blocking frequency as determined from analyses and reforecasts as a
function of forecast lead time. Areas shaded in gray denote the two sectors in
subsequent figures, the Pacific and Euro-Atlantic sectors. (b) Analyzed, spatially
smoothed yearly blocking frequencies for each year between 1985 and 2012.
Figure 3: Brier Skill Scores of blocking probability forecasts for (a) Pacific, and (b)
Euro-Atlantic sectors.

Figure 4: Asin Fig. 3, but for Brier Skill Scores of blocking probability forecasts by
half decade for (a) Pacific, and (b) Euro-Atlantic sectors. Solid lines present the skill
scores for the actual reforecasts, dashed lines present the skill under perfect-model
assumptions.

Figure 5: Reliability diagrams for blocking probability forecasts for (a) +3 day
forecast, (b) +6 day forecast, (c) +9 day forecast, (d) +12 day forecast, and (e) +15
day forecast. Dotted red line denotes the skill in the Euro-Atlantic sector and dotted
blue line denotes the skill in the Pacific sector. Red and blue bars indicate the
frequency of usage of each forecast probability category for the Euro-Atlantic and
Pacific sectors, respectively.

Figure 6: RMM1 and RMM?2 phase plots for (a) analyzed, and (b) control forecasts

whose initial states are within the purple circle. Differences in time from the initial

31



663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

time conveyed by the colors of lines and dots, with the legend indicating the lead
time in days. Quadrants 1 to 8 are marked in the corners of the diagram.

Figure 7: PDF of daily change in angle of RMM vector (A8), measured in degrees, for
(a) overall RMM, (b) OLR contribution to RMM, and (c) wind-component
contribution to RMM. Only Dec-Jan-Feb 1985-2012 dates which had an initial RMM
magnitude of greater than 1.0, an RMM2 component < 0.0, and an initial OLR
component of > 0.5 were included as samples. Dots indicate the mean of the PDF for
a given day, horizontally offset slightly so that dots do not overlap.

Figure 8: Asin Fig. 7, but for the PDF of the change in magnitude of RMM.

Figure 9: Dec-Jan-Feb 1997-2012 daily-average precipitation climatologies for (a)
analyzed GPCP data, (b) +0 to 1 day forecast, (c) +7 to 8-day forecast, and (d) +15 to
16-day forecast.

Figure 10: Rank histograms of RMM1 and RMM?2 values [green bars], the angle of
the vector in the (RMM1, RMM2) phase space [red bars], and the magnitude [blue
bars], for forecast lead times of 1 to 16 days.

Figure 11: Continuous ranked probability skill scores (CRPSS) of ensemble
reforecasts of the MJO relative to an unconditional climatological distribution (red
line) and relative to a lagged regression model using current and recent analyzed
RMM values as predictors (blue line). The green line shows the “perfect-model”
skill, when one forecast member is used as a surrogate for the verification and the
remaining 10 members are used to generate the probabilities.

Figure 12: Correlation skill (panels (a), (c), and (e)) and RMSE (panels (b), (d), and

(f)) for MJO forecasts. Panels (a) and (b) show skill and RMSE for total and for
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individual wind and OLR components of RMM. Panels (c) and (d) show overall skill
and RMSE for half-decadal periods. Panels (e) and (f) show skill for cases with
initial large and small amplitude, as defined in the text.

Figure 13: Change in blocking frequency as a function of longitude for when
analyzed (panel a) or +4, +8, or +16 day forecast (panels b, ¢, and d, respectively)
has RMM of phase theta + / - 22.5 degrees. Quadrants of MJO diagram as marked on
Fig. 6 are noted on the right-hand side of the plots. The ranges the Euro-Atlantic and

Pacific Sectors are noted with heavy black lines at the bottom of each panel.
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699 longitude.
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702  Figure 2: (a) Blocking frequency as determined from analyses and reforecasts as a
703  function of forecast lead time. Areas shaded in gray denote the two sectors in
704  subsequent figures, the Pacific and Euro-Atlantic sectors. (b) Analyzed, spatially

705 smoothed yearly blocking frequencies for each year between 1985 and 2012.
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Figure 3: Brier Skill Scores of blocking probability forecasts for (a) Pacific, and (b)
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Euro-Atlantic sectors.
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half decade for (a) Pacific, and (b) Euro-Atlantic sectors. Solid lines present the skill

assumptions.
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Figure 5: Reliability diagrams for blocking probability forecasts for (a) +3 day
forecast, (b) +6 day forecast, (c) +9 day forecast, (d) +12 day forecast, and (e) +15
day forecast. Dotted red line denotes the skill in the Euro-Atlantic sector and dotted
blue line denotes the skill in the Pacific sector. Red and blue bars indicate the
frequency of usage of each forecast probability category for the Euro-Atlantic and

Pacific sectors, respectively.
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Figure 6: RMM1 and RMM?2 phase plots for (a) analyzed, and (b) control forecasts

whose initial states are within the purple circle. Differences in time from the initial

time conveyed by the colors of lines and dots, with the legend indicating the lead

time in days. Quadrants 1 to 8 are marked in the corners of the diagram.
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(a) PDF of RMM A§ per day
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733

734  Figure 7: PDF of daily change in angle of RMM vector (A0), measured in degrees, for
735  (a) overall RMM, (b) OLR contribution to RMM, and (c) wind-component

736  contribution to RMM. Only Dec-Jan-Feb 1985-2012 dates which had an initial RMM
737  magnitude of greater than 1.0, an RMM2 component < 0.0, and an initial OLR

738  component of > 0.5 were included as samples. Dots indicate the mean of the PDF for

739  agiven day, horizontally offset slightly so that dots do not overlap.
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(a) PDF of RMM magnitude change
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742  Figure 8: Asin Fig. 7, but for the PDF of the change in magnitude of RMM.
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(a) GPCP analyzed
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744
745  Figure 9: Dec-Jan-Feb 1997-2012 daily-average precipitation climatologies for (a)

746  analyzed GPCP data, (b) +0 to 1 day forecast, (c) +7 to 8-day forecast, and (d) +15 to
747  16-day forecast.
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Figure 10: Rank histograms of RMM1 and RMM2 values [green bars], the angle of
the vector in the (RMM1, RMM2) phase space [red bars], and the magnitude [blue

bars], for forecast lead times of 1 to 16 days.
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Figure 11: Continuous ranked probability skill scores (CRPSS) of ensemble
reforecasts of the MJO relative to an unconditional climatological distribution (red
line) and relative to a lagged regression model using current and recent analyzed
RMM values as predictors (blue line). The green line shows the “perfect-model”
skill, when one forecast member is used as a surrogate for the verification and the

remaining 10 members are used to generate the probabilities.
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(a) OLR and wind correlation skill 20 (b) OLR and wind RMSE
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766  Figure 12: Correlation skill (panels (a), (c), and (e)) and RMSE (panels (b), (d), and
767  (f)) for MJO forecasts. Panels (a) and (b) show skill and RMSE for total and for

768 individual wind and OLR components of RMM. Panels (c) and (d) show overall skill
769  and RMSE for half-decadal periods. Panels (e) and (f) show skill for cases with

770 initial large and small amplitude, as defined in the text.
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Figure 13: Change in blocking frequency as a function of longitude for when

analyzed (panel a) or +4, +8, or +16 day forecast (panels b, ¢, and d, respectively)

has RMM of phase theta + / - 22.5 degrees.

Quadrants of MJO diagram as marked on

Fig. 6 are noted on the right-hand side of the plots. The ranges the Euro-Atlantic and

Pacific Sectors are noted with heavy black lines at the bottom of each panel.
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